产品中心

Product Center

当前位置:首页产品中心德国REXROTH力士乐Rexroth放大器德国REXROTH放大器VT-VSPA1-1-1X

德国REXROTH放大器VT-VSPA1-1-1X

产品简介

德国REXROTH放大器VT-VSPA1-1-1X
东莞天骥公司出售原装德国力士乐REXROTH品牌产品:力士乐液压阀,力士乐电磁阀,力士乐比例阀,力士乐电机,力士乐马达,力士乐液压马达,力士乐油泵,力士乐液压泵,力士乐柱塞泵,力士乐截止阀等。公司能给予您提供全新正品,*,*,部分常用型号有货,不常周期4-6周,可加急处理订单。我司质量有保障!

产品型号:
更新时间:2024-07-23
厂商性质:经销商
访问量:1036
详细介绍在线留言
品牌REXROTH/德国力士乐产地类别进口
应用领域化工,文体,石油,建材,纺织皮革

德国REXROTH放大器VT-VSPA1-1-1X
东莞天骥公司出售原装德国力士乐REXROTH品牌产品:力士乐液压阀,力士乐电磁阀,力士乐比例阀,力士乐电机,力士乐马达,力士乐液压马达,力士乐油泵,力士乐液压泵,力士乐柱塞泵,力士乐截止阀等。公司能给予您提供全新正品,*,*,部分常用型号有货,不常周期4-6周,可加急处理订单。我司质量有保障!公司具有良好的市场信誉,专业的销售和技术服务团队,凭着多年经营经验,熟悉并了解市场行情,赢得了国内外厂商的*好评。
德国力士乐REXROTH运算放大器(简称“运放”)是具有很高放大倍数的电路单元。在实际电路中,通常结合反馈网络共同组成某种功能模块。它是一种带有特殊耦合电路及反馈的放大器。其输出信号可以是输入信号加、减或微分、积分等数学运算的结果。由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”。运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。随着半导体技术的发展,大部分的运放是以单芯片的形式存在。运放的种类繁多,广泛应用于电子行业当中。
力士乐REXROTH放大器简介:
增加信号幅度或功率的装置,它是自动化技术工具中处理信号的重要元件。放大器的放大作用是用输入信号控制能源来实现的,放大所需功耗由能源提供。对于线性放大器,输出就是输入信号的复现和增强。对于非线性放大器,输出则与输入信号成一定函数关系。放大器按所处理信号物理量分为机械放大器、机电放大器、电子放大器、液动放大器和气动放大器等,其中用得较广泛的是电子放大器。随着射流技术(见射流元件)的推广,液动或气动放大器的应用也逐渐增多。电子放大器又按所用有源器件分为真空管放大器、晶体管放大器、固体放大器和磁放大器,其中又以晶体管放大器应用较广。在自动化仪表中晶体管放大器常用于信号的电压放大和电流放大,主要形式有单端放大和推挽放大。此外,还常用于阻抗匹配、隔离、电流-电压转换、电荷-电压转换(如电荷放大器)以及利用放大器实现输出与输入之间的一定函数关系(如运算放大器)。
力士乐REXROTH放大器测量:
运算放大器是差分输入、单端输出的*增益放大器,常用于高精度模拟电路,因此必须精确测量其性能。但在开环测量中,其开环增益可能高达107或更高,而拾取、杂散电流或塞贝克(热电偶)效应可能会在放大器输入端产生非常小的电压,这样误差将难以避免。
通过使用伺服环路,可以大大简化测量过程,强制放大器输入调零,使得待测放大器能够测量自身的误差。显示了一个运用该原理的多功能电路,它利用一个辅助运放作为积分器,来建立一个具有*直流开环增益的稳定环路。开关为执行下面所述的各种测试提供了便利。
所示电路能够将大部分测量误差降至低,支持精确测量大量直流和少量交流参数。附加的“辅助”运算放大器无需具有比待测运算放大器更好的性能,其直流开环增益能达到106或更高。如果待测器件(DUT)的失调电压可能超过几mV,则辅助运放应采用±15 V电源供电(如果DUT的输入失调电压可能超过10 mV,则需要减小99.9 kΩ电阻R3的阻值。)
DUT的电源电压+V和–V幅度相等、极性相反。总电源电压理所当然是2 × V。该电路使用对称电源,即使“单电源”运放也是如此,因为系统的地以电源的中间电压为参考。
作为积分器的辅助放大器在直流时配置为开环(高增益),但其输入电阻和反馈电容将其带宽限制为几Hz。这意味着,DUT输出端的直流电压被辅助放大器以高增益放大,并通过一个1000:1衰减器施加于DUT的同相输入端。负反馈将DUT输出驱动至地电位。(事实上,实际电压是辅助放大器的失调电压,更精确地说是该失调电压加上辅助放大器的偏置电流在100 kΩ电阻上引起的压降,但它非常接近地电位,因此无关紧要,特别是考虑到测量期间此点的电压变化不大可能超过几mV)。
测试点TP1上的电压是施加于DUT输入端的校正电压(与误差在幅度上相等)的1000倍,约为数十mV或更大,因此可以相当轻松地进行测量。
理想运算放大器的失调电压(Vos)为0,即当两个输入端连在一起并保持中间电源电压时,输出电压同样为中间电源电压。现实中的运算放大器则具有几微伏到几毫伏不等的失调电压,因此必须将此范围内的电压施加于输入端,使输出处于中间电位。
给出了基本测试——失调电压测量的配置。当TP1上的电压为DUT失调电压的1000倍时,DUT输出电压处于地电位。
理想运算放大器具有无限大的输入阻抗,无电流流入其输入端。但在现实中,会有少量“偏置”电流流入反相和同相输入端(分别为Ib–和Ib+),它们会在高阻抗电路中引起显著的失调电压。根据运算放大器类型的不同,这种偏置电流可能为几fA(1 fA = 10–15 A,每隔几微秒流过一个电子)至几nA;在某些超快速运算放大器中,甚至达到1 - 2 μA。图3显示如何测量这些电流。
该电路与图2的失调电压电路基本相同,只是DUT输入端增加了两个串联电阻R6和R7。这些电阻可以通过开关S1和S2短路。当两个开关均闭合时,该电路与图2*相同。当S1断开时,反相输入端的偏置电流流入Rs,电压差增加到失调电压上。通过测量TP1的电压变化(=1000 Ib–×Rs),可以计算出Ib–。同样,当S1闭合且S2断开时,可以测量Ib+。如果先在S1和S2均闭合时测量TP1的电压,然后在S1和S2均断开时再次测量TP1的电压,则通过该电压的变化可以测算出“输入失调电流”Ios,即Ib+与Ib–之差。R6和R7的阻值取决于要测量的电流大小。
如果Ib的值在5 pA左右,则会用到大电阻,使用该电路将非常困难,可能需要使用其它技术,牵涉到Ib给低泄漏电容(用于代替Rs)充电的速率。
当S1和S2闭合时,Ios仍会流入100 Ω电阻,导致Vos误差,但在计算时通常可以忽略它,除非Ios足够大,产生的误差大于实测Vos的1%。
运算放大器的开环直流增益可能非常高,107以上的增益也并非罕见,但250,000到2,000,000的增益更为常见。直流增益的测量方法是通过S6切换DUT输出端与1 V基准电压之间的R5,迫使DUT的输出改变一定的量(图4中为1 V,但如果器件采用足够大的电源供电,可以规定为10 V)。如果R5处于+1 V,若要使辅助放大器的输入保持在0附近不变,DUT输出必须变为–1 V。
TP1的电压变化衰减1000:1后输入DUT,导致输出改变1 V,由此很容易计算增益(= 1000 × 1 V/TP1)。
为了测量开环交流增益,需要在DUT输入端注入一个所需频率的小交流信号,并测量相应的输出信号(图5中的TP2)。完成后,辅助放大器继续使DUT输出端的平均直流电平保持稳定。
图5中,交流信号通过10,000:1的衰减器施加于DUT输入端。对于开环增益可能接近直流值的低频测量,必须使用如此大的衰减值。(例如,在增益为1,000,000的频率时,1 V rms信号会将100 μV施加于放大器输入端,放大器则试图提供100 V rms输出,导致放大器饱和。)因此,交流测量的频率一般是几百Hz到开环增益降至1时的频率;在需要低频增益数据时,应非常小心地利用较低的输入幅度进行测量。所示的简单衰减器只能在100 kHz以下的频率工作,即使小心处理了杂散电容也不能超过该频率。如果涉及到更高的频率,则需要使用更复杂的电路。
运算放大器的共模抑制比(CMRR)指共模电压变化导致的失调电压视在变化与所施加的共模电压变化之比。在DC时,它一般在80 dB至120 dB之间,但在高频时会降低。
测试电路非常适合测量CMRR。它不是将共模电压施加于DUT输入端,以免低电平效应破坏测量,而是改变电源电压(相对于输入的同一方向,即共模方向),电路其余部分则保持不变。
在图6所示电路中,在TP1测量失调电压,电源电压为±V(本例中为+2.5 V和–2.5 V),并且两个电源电压再次上移+1 V(至+3.5 V和–1.5 V)。失调电压的变化对应于1 V的共模电压变化,因此直流CMRR为失调电压与1 V之比。
CMRR衡量失调电压相对于共模电压的变化,总电源电压则保持不变。电源抑制比(PSRR)则相反,它是指失调电压的变化与总电源电压的变化之比,共模电压保持中间电源电压不变。
所用的电路*相同,不同之处在于总电源电压发生改变,而共模电平保持不变。本例中,电源电压从+2.5 V和–2.5 V切换到+3 V和–3 V,总电源电压从5 V变到6 V。共模电压仍然保持中间电源电压。计算方法也相同(1000 × TP1/1 V)。
为了测量交流CMRR和PSRR,需要用电压来调制电源电压,如图8所示。DUT继续在直流开环下工作,但确切的增益由交流负反馈决定(图中为100倍)。
为了测量交流CMRR,利用幅度为1 V峰值的交流电压调制DUT的正负电源。两个电源的调制同相,因此实际的电源电压为稳定的直流电压,但共模电压是2V峰峰值的正弦波,导致DUT输出包括一个在TP2测量的交流电压。
如果TP2的交流电压具有x V峰值的幅度(2x V峰峰值),则折合到DUT输入端(即放大100倍交流增益之前)的CMRR为x/100 V,并且CMRR为该值与1 V峰值的比值。
交流PSRR的测量方法是将交流电压施加于相位相差180°的正负电源,从而调制电源电压的幅度(本例中同样是1 V峰值、2 V峰峰值),而共模电压仍然保持稳定的直流电压。计算方法与上一参数的计算方法非常相似。
总结
当然,运算放大器还有许多其它参数可能需要测量,而且还有多种其它方法可以测量上述参数,但正如本文所示,基本的直流和交流参数可以利用易于构建、易于理解、毫无问题的简单基本电路进行可靠测量。
REXROTH放大器原理:
锁相放大器实际上是一个模拟的傅立叶变换器,锁相放大器的输出是一个直流电压,正比于是输入信号中某一特定频率(参数输入频率)的信号幅值。而输入信号中的其他频率成分将不能对输出电压构成任何贡献。
两个正弦信号,频率都为1Hz,有90度相位差,用乘法器相乘得到的结果是一个有直流偏量的正弦信号。
如果是一个1Hz和一个1.1Hz的信号相乘,用乘法器相乘得到的结果是轮廓为正弦的调制信号,直流偏量为0。
只有与参考信号频率**的信号才能在乘法器输出端得到直流偏量,其他信号在输出端都是交流信号。如果在乘法器的输出端加一个低通滤波器,那么所有的交流信号分量全部被滤掉,剩下的直流分量就只是正比于输入信号中的特定频率的信号分量的幅值。
REXROTH放大器现货型号表:
VT-VSPA1-1-1X
VT3002-1-2X/32D
VT3002-1-2X/32F
VT3002-1-2X/48F
VT3002-1-2X/64X
VT-SSPA1-508-21/V0
VT-SSPA1-525-20/V0/I
VT 11118-1X
VT-MSPA1-508-10/V0
VT-VRRA1-527-20/V0
VT-VRRA1-537-20/V0
VT-VRRA1-527-20/V0/2STV
VT-VSPA2-1-2X/V0/T1
VT-VSPA2-1-2X/V0/T5
VT-VSPA2-50-10/T1
VT-VSPA2-50-10/T5
VT-VRPA1-150-10/V0/0
VT-VRPA1-151-10/V0/0
VT-VRPA2-1-1X/V0/T1
VT-VRPA2-2-1X/V0/T1
VT-5035-17
VT-MACAS-500-10/V0/1
VT5041-3X/V13D
VT-SWMAK-1-10/V0/0

德国REXROTH放大器VT-VSPA1-1-1X
 

在线留言

留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7